《代數(shù)雜志》是一份領(lǐng)先的國(guó)際期刊,發(fā)表的論文顯示了在代數(shù)和相關(guān)計(jì)算方面的高質(zhì)量研究成果。只有最好和最有趣的論文才會(huì)被考慮發(fā)表在雜志上。考慮到這一點(diǎn),重要的是,這一貢獻(xiàn)應(yīng)產(chǎn)生實(shí)質(zhì)性的結(jié)果,對(duì)實(shí)地產(chǎn)生持久的影響。該雜志還在尋找能夠提供創(chuàng)新技術(shù)的工作,為未來(lái)的研究提供有希望的結(jié)果。計(jì)算代數(shù)部分計(jì)算代數(shù)部分已被引入,以提供一個(gè)適當(dāng)?shù)恼搲├糜?jì)算機(jī)計(jì)算作出貢獻(xiàn),并擴(kuò)大該期刊的范圍。在《代數(shù)雜志》的計(jì)算代數(shù)部分,下列論文特別受歡迎:?通過(guò)計(jì)算機(jī)計(jì)算得到的結(jié)果——要適合發(fā)表這些結(jié)果,必須代表數(shù)學(xué)的一大進(jìn)步。用更高的計(jì)算機(jī)能力來(lái)擴(kuò)展以前的計(jì)算是不夠的。相反,貢獻(xiàn)必須展示新的方法和數(shù)學(xué)結(jié)果才能被接受。?特定代數(shù)結(jié)構(gòu)的分類(如果合適,以表的形式),這些結(jié)構(gòu)不容易獲得,并且對(duì)代數(shù)社區(qū)有用。?對(duì)實(shí)驗(yàn)的描述和結(jié)果,提出新的猜想,支持現(xiàn)有猜想,或者對(duì)現(xiàn)有猜想給出反例。?論文強(qiáng)調(diào)代數(shù)建設(shè)性的一面,如描述和分析的新算法(不是程序清單,也不是,在第一個(gè)實(shí)例,討論軟件開發(fā)的問(wèn)題),改進(jìn)和擴(kuò)展現(xiàn)有的算法,計(jì)算方法的描述并不是嚴(yán)格意義上的算法(例如,他們不需要終止)。?代數(shù)與計(jì)算機(jī)科學(xué)之間的交互,如自動(dòng)結(jié)構(gòu)、字詞問(wèn)題以及組和半組中的其他決策問(wèn)題,最好,但不一定,強(qiáng)調(diào)相關(guān)算法的實(shí)用性、實(shí)現(xiàn)和性能。?歡迎來(lái)自代數(shù)的所有領(lǐng)域的貢獻(xiàn),包括代數(shù)幾何或代數(shù)數(shù)論,如果重點(diǎn)是代數(shù)方面。描述代數(shù)結(jié)果或方法的應(yīng)用的貢獻(xiàn),例如在編碼理論,密碼學(xué),或微分方程的代數(shù)理論是非常受歡迎的。在計(jì)算代數(shù)部分發(fā)表論文的一個(gè)重要的通用標(biāo)準(zhǔn)是它對(duì)建設(shè)性方面的強(qiáng)調(diào)。這本雜志有一個(gè)開放的檔案。所有已發(fā)表的項(xiàng)目,包括研究論文,都可以無(wú)限制地訪問(wèn),并在發(fā)表48個(gè)月后永久免費(fèi)閱讀和下載。存檔中的所有論文均受愛思唯爾用戶許可的約束。
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.The Computational Algebra SectionThe Computational Algebra section has been introduced to provide an appropriate forum for contributions which make use of computer calculations and to broaden the scope of the Journal.The following papers are particularly welcome in the Computational Algebra section of the Journal of Algebra:? Results obtained by computer calculations - to be suitable for publication such results must represent a major advance of mathematics. It is not sufficient to extend previous computations by means of higher computer power. Rather the contribution has to exhibit new methods and mathematical results to be accepted.? Classifications of specific algebraic structures (in form of tables, if appropriate), which are not easily obtained and are useful to the algebraic community.? Description and outcome of experiments, to put forward new conjectures, to support existing conjectures, or to give counter examples to existing conjectures.? Papers emphasizing the constructive aspect of algebra, such as description and analysis of new algorithms (not program listings, nor, in the first instance, discussions of software development issues), improvements and extensions of existing algorithms, description of computational methods which are not algorithms in the strict sense (since, e.g., they need not terminate).? Interactions between algebra and computer science, such as automatic structures, word problems and other decision problems in groups and semigroups, preferably, but not necessarily, with an emphasis on practicality, implementations, and performance of the related algorithms.? Contributions are welcome from all areas of algebra, including algebraic geometry or algebraic number theory, if the emphasis is on the algebraic aspects.Contributions describing applications of algebraic results or methods, for example in coding theory, cryptography, or the algebraic theory of differential equations are highly welcome. An important general criterion for the publication of a paper in the Computational Algebra section is its emphasis on the constructive aspects.This journal has an Open Archive. All published items, including research articles, have unrestricted access and will remain permanently free to read and download 48 months after publication. All papers in the Archive are subject to Elsevier's user license.
SCI熱門推薦期刊 >
SCI常見問(wèn)題 >
職稱論文常見問(wèn)題 >
EI常見問(wèn)題 >